${\lim\limits_{x\to\infty} \frac{f(x)}{f(-x)}=-1}$
imply about a polynomial $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$
with real coefficients? Prove your answer.
-
Try to factorize
$x^n.$
-
… then take the limit.
-
What is
$\lim_{x\to\infty}\frac{1}{x^k}$
for any positive integer$k?$
-
Factorizing
$x^n$
and knowing$\lim_{x\to\infty}\frac{1}{x^k}=0$
for any positive integer$k$
, we have:$$\begin{aligned} \lim\limits_{x\to\infty} \frac{f(x)}{f(-x)} &= \lim\limits_{x\to\infty} \frac{x^n(a_n+a_{n-1}/x+a_{n-2}/x^2+\cdots+a_0/x^n)} {(-x)^n(a_n+a_{n-1}/(-x)+a_{n-2}/(-x)^2+\cdots+a_0/(-x)^n)} \\ &= \lim_{x\to\infty} \frac{x^n(a_n+0+0+\cdots+0)}{(-x)^n(a_n+0+0+\cdots+0)} \\ &= (-1)^n. \end{aligned} $$
If this limit is$-1,$
then$n$
must be odd.