Find positive integers $a,b,c,d$ such that
$\displaystyle a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}=\frac{15}{11}.$
-
Given
$\frac{1}{x}<1$when$x>1,$how does$a+\frac{1}{x}$relate to$\frac{15}{11}?$ -
With that in mind, what can you say about
$b+\frac{1}{y}?$ -
Can you write a fraction
$\frac{m}{n}$in a different way? -
… to resemble
$\frac{1}{z}$perhaps ($z$may be a fraction)? -
How about applying that approach to
$1+\frac{4}{11}$? -
… and continue successively?
-
Let
$x=\frac{1}{b+\cdots}.$Consider the value of$x.$Since$b \geq 1$and the numerator is$1,$it follows that$x<1$. Now, consider the value of$a$. Since$x<1,$$1 \leq \frac{15}{11} < 2$and$a$is integral,$a$must be$1.$So we now have$\frac{15}{11} = 1 + \frac{4}{11}.$Since we require the numerator of each nested fraction to be$1,$we can use the fact that$\frac{m}{p} = \frac{1}{\frac{p}{m}}$to get$\frac{15}{11} = 1 + \frac{1}{\frac{11}{4}}.$Using this technique successively, we can decompose the expression and get$$ \begin{aligned} \dfrac{15}{11} &= 1+\dfrac{4}{11} \\[2mm] &= 1+\dfrac{1}{\dfrac{11}{4}} \\[2mm] &= 1+\dfrac{1}{2+\dfrac{3}{4}} \\[2mm] &= 1+\dfrac{1}{2+\dfrac{1}{\dfrac{4}{3}}} \\[2mm] &= 1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{3}}}. \end{aligned} $$And hence$a=1,b=2,c=1,d=3.$